First mirror image molecule spotted in interstellar space

first_imgA new find in deep space may explain one of the biggest mysteries here on Earth. Researchers have spotted the first evidence of a chiral molecule—a molecule with two mirror image “twins”—in interstellar space. The molecule, used on modern-day Earth to make polyethylene plastics, was found in a gas cloud about 28,000 light-years away from our planet. And though it isn’t directly involved in biochemical reactions, it may shed light on how the chiral molecules that ultimately led to life on Earth formed in the first place.Molecules, especially large and complicated ones, can come in mirror image forms even when they have the same chemical formula. These forms, often termed “left-handed” and “right-handed,” behave the same way physically in terms of melting, freezing, and absorbing light. But they can react chemically with other substances in dramatically different ways, with one form combining readily and the other reacting slowly, if at all. For instance, while one form of some pharmaceutical compounds serves a useful purpose, their mirror images aren’t recognized by the body—and in some cases can even be harmful.All the amino acids found in living creatures—the building blocks of proteins—are left-handed. Some scientists believe the trait is leftover from the soup of prebiotic molecules delivered to our planet from space by asteroids and comets in Earth’s early years. When life got started, the left-handed amino acids incorporated into the first living cells and became the gold standard for all subsequent life, according to the prevailing notion. This rendered right-handed forms useless because they didn’t participate in biochemical reactions. Studies of some meteorites have revealed that they contain both forms of various chiral molecules, but that left-handed forms typically are found in larger concentrations—an oddity that can’t yet be fully explained. No one has ever before spotted a chiral molecule in interstellar space, says Brett McGuire, an astrochemist at the California Institute of Technology (Caltech) in Pasadena. But when he and his colleagues sorted through data gathered by radio telescopes, they spotted signs of one called propylene oxide (CH3CHCH2O) in a large cloud of gas near the center of the Milky Way. The signs included three particular wavelengths of radiation that had been absorbed by the substance as they passed through the cloud. Video of Chiral molecules from outer space Sign up for our daily newsletter Get more great content like this delivered right to you! Country Science Email Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe The cloud, called Sagittarius B2 North, lies about 28,000 light-years away near the center of the Milky Way. It’s a little more than 3 light-years across and contains enough gas to make about 250,000 stars the size of our sun. Radio telescope data suggest that the propylene oxide is found in a shell of gas far outside that core, most likely at a temperature of about 5 K (–268°C). That fits well with estimates made from other teams’ observations of other gases in the same cloud, says Brandon Carroll, also an astrochemist at Caltech and co-author of the new study. The team’s observations are reported online today in Science and are also being presented today at a meeting of the American Astronomical Society in San Diego, California.The finding bolsters the notion that complicated molecules can form on ice grains in diffuse clouds of interstellar gas and dust, as many models of evolving solar systems suggest. However, the team’s observations don’t include any information about which forms of propylene oxide—right-handed, left-handed, or both—exist in the distant gas cloud. Future studies, such as those that look at particular forms of polarized light that have passed through the cloud, may be able to discern whether there’s an imbalance between the left-handed and right-handed forms. That, in turn, would help scientists understand whether imbalances in the proportions of molecule handedness arise while the molecules are forming in space or later, during the evolution of life.A variety of substances, including simple carbon-bearing molecules thought to be important precursors for life, have been spotted in interstellar space around nearby stars. But the team’s new finding of a chiral molecule “offer[s] another step of complexity” that suggests that other such substances, including prebiotic molecules, can form in interstellar space, possibly on the surfaces of small grains of ice, says Tom Millar, an astrochemist at Queen’s University Belfast in the United Kingdom, who was not involved in the work. The findings also open up challenges for other teams to further study how life’s earliest ingredients might have formed, he notes. Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img

Leave a Reply

Your email address will not be published. Required fields are marked *

Posted by: admin on

Tags: , , , , , , , , ,